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ABSTRACT :  There are several Theorems are prove in L-space, using various type of mappings.  In this paper,
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I. INTRODUCTION

It was shown by S. Kasahara [13] in 1976, that several
known generalization of the Banach Contraction Theorem
can be derived easily from a Fixed Point Theorem in an
L-space. Iseki [10] has used the fundamental idea of
Kasahara to investigate the generalization of some known
Fixed Point Theorem in L-space.

Let N be the set of natural numbers and X be a
nonempty set.  Then L-space is defined to be the pair
(X, ) of the set X and a subset  of the set XN × X,
satisfying the following conditions:

L
1
 � if x

n
 = x X for all ,n N then ({ } , )n n Nx x 

2 ({ ) , ) ,  then ({ }
in n N n i NL if x x x  

For every subsequence { }  of { )
in i N n n Nx x 

In what follows instead of writing ({ ) , ) ,n n Nx x  we

write { )n n Nx x   or x
n
  x and read { }n n Nx  converges

to x.  Further we give some definitions regarding L-space.

Definition 1. Let (X, ) be an L-space.  It is said to
be �separated� if each sequence in x converges to at most
one point of X.

Definition 2.  A mapping f on (X, ) into an L-space
(X, )is said to be 'continuous' if x

n
  x implies

f(x
n
)  f(x) for some subsequence { )n i Nx   for { ) .n n Nx 

Definition 3. Let d- be a non negative extended real

valued function on X × X: 0 ( , ) id x y    for all , .x y X
The L-space is said to be d- complete if each sequence

{ }n n Nx  in X with 10
( , )i ii

d x x



  converges to the

atmost one point of X.

In this context Kasahara S. proved a lemma, which as
follows:

Lemma (S. Kasahara):

Let (X, ) be an L-space which is d- complete for a
non negative real valued function d on X × X. If (X, ) is
separated then:

d(x, y) = d(y, x) = 0 implies, x = y for all ,x y X

During the past few years many great mathematicians
Yeh [19], Singh [18], Pathak and Dubey [14], Sharma and
Agrawa [17], Patel, Sahu and Sao [15], Patel and Patel [16],
worked for L-space.  In this chapter, we similar investigation
for the study of Fixed Point Theorems in L-space are worked
out.  We find some more Fixed Point Theorem and Common
Fixed Point Theorem in L-sapce.

Theorem 1

Let (X, ) be a separated L-space, which is d- complete
for a non negative real valued function d on X × X with
d(x, x) = 0, for each x in X.  Let E, F and T be three
continuous self mapping of X into itself, satisfying the
following condition:

1c
1
 : ( ) ( )E X T X

and ( ) ( ),F X T X  ET - TE, FT = TF

1c
2
: 

( , ){ ( , ) ( , )}
( , )

( , ) ( , )

d Tx Ty d Tx Ex d Ty Fy
d Ex Fy

d Tx Fy d Ty Ex

 
    

[ ( , ) ( , )]d Tx Ex d Ty Fy 

[ ( , ) ( , )] . ( , )d Tx Fy d Ty Ex d Tx Ty   

For all x, y in X, where non negative , , ,  such
that 0 <  +  +  +  < 1, with .Tx Ty  Then E, F, T have
unique common fixed point.
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Proof:

Let 0 ,x X since ( ) ( )E X T X we can choose a point

1 ,x X such that Tx
1
 = Ex

0
, also ( ) ( ),F X T X we can

choose 2x X such that  In general we can choose the
point:

Tx
2n+1

 = Ex
2n 

                        ... (1.1)

Tx
2n+2

 = Fx
2n+2

                       ... (1.2)

Now consider,

2 1 2 2 2 2 1( , ) ( , )n n n nd Tx Tx d Ex Fx  

From 1c
2

2 1 2 2 2 1 2 1
2 2 1

2 2 1 2 1 2

( ){ ( , ) ( , )}
( , )

( , ) ( , )
n n n n n

n n
n n n n

d Tx d Tx Ex d Tx Fx
d Tx Fx

d Tx Fx d Tx Ex
  


 

 
    

2 2 2 1 2 1

2 2 1 2 1 2

2 2 1

[ ( , ) ( , )]

[ ( , ) ( , )]

. ( , )

n n n n

n n n n

n n

d Tx Ex d Tx Fx

d Tx Fx d Tx Ex

d Tx Tx

 

 



 

 



2 2 1 2 2 1 2 1 2 2
2 1 2 2

2 2 2 2 1 2

( , ){ ( , ) ( , )}
( , )

( , ) ( , )
n n n n n n

n n
n n n n

d Tx Tx d Tx Tx d Tx Tx
d Tx Tx

d Tx Tx d Tx Tx
   

 
 

 
    

2 2 1 2 1 2 2

2 2 2 2 1 2 1

2 2 1

[ ( , ) ( , )]

[ ( , ) ( , )]

. ( , )

n n n n

n n n n

n n

d Tx Tx d Tx Tx

d Tx Tx d Tx Tx

d Tx Tx

  

  



 

 



2 1 2 2 2 2 1( , ) . ( , )
1

n n n nd Tx Tx d Tx Tx  
      

      

2 1 2 2 2 2 1( , ) . ( , )n n n nd Tx Tx q d Tx Tx  

where q = 1;
1

     
   

For n = 1, 2, 3, ... ... ...

Whether, 2 1 2 2( , ) 0n nd Tx Tx    or not

Similarly, we have

2 1 2 2 0 1( , ) . ( , )n
n nd Tx Tx q d Tx Tx  

For every positive integer n, this means that,

2 1 2 20
( , )i ii

d Tx Tx


 
 

Thus the d- completeness of the space implies that,

the sequence 0( )n
n NT x   converges to some u in . so by

(1.1) and (1.2):

0{ }n
n NE x   and 0{ }n

n NF x   also converges to the some
point u, respectively.

Since E, F, T are continuous, there is a subsequence t

of 0{ }n
n NT x   such that:

[ ( )] ( ),E T t E u [ ( )] ( ),T E t T u [ ( )] ( ),F T t F u

[ ( )] ( )T F t T u

By (1c
1
) we have, E(u) = F(u) = T(u)            ... (1.3)

Thus, we can write

T(Tu) = T(Eu) = E(Tu) = E(Eu) = E(Fu) = T(Fu) = F(Tu)
= F(Eu) = F(Fu)                                       ... (1.4)

By 1c
2
, (1.3) and (1.4) we have, if ( ) ( )E u F Eu

[ , ( )][ ( , ) { ( ), ( )}]
[ , ( )]

[ , ( )] [ ( ), ]

d Tu T Eu d Tu Eu d T Eu F Eu
d Eu F Eu

d Tu F Eu d T Eu Eu

 
    

[ ( , ) { ( ), ( )}]

[ { , ( )} { ( ), }]

. [ , ( )]

d Tu Eu d T Eu F Eu

d Tu F Eu d T Eu Eu

d Tu T Eu

 
 


[ , ( ) ( ), [ , ( )]d Eu F Eu d Eu F Eu    

Thus we get a contradiction,

Hence Eu = F(Eu)                          ... (1.5)

From (1.4) and (1.5) we have

Eu = F(Eu) = T(Eu) = E(Eu)

Hence Eu is a common fixed point of E, F and T.

Uniqueness:

Let v is another fixed point of E, F and T different
from u, then by 1c

2
 we have:

d(u, v) = d(Eu, Fv)

( , ){ ( , ) ( , )}
( , )

( , ) ( , )

d Tu Tv d Tu Eu d Tv Fv
d Eu Fv

d Tu Fv d Tv Eu

 
    

[ ( , ) ( , )]

[ ( , ) ( , )]

. ( , )

d Tu Eu d Tv Fv

d Tu Fv d Tv Eu

d Tu Tv

 
 


( , ) (2 ). ( , )d u v d u v   

Which contradiction.

Therefore u is unique fixed point of E, F and T in X.

Remark:

I.  If we put  =  =  = 0 then we get result of
Jungck [11] in Lspace.

II. If we put  =  =  = 0 then we get the result of
Kannan [12] in L-space.

III. If we put  =  = 0 then we get the result of
Chatterjee [5] in L-space.

Theorem 2

Let (X, ) be a separated L-space, which is d- complete
for a non Negative real valued function d on X × X with
d(x, x) = 0, for each x in X.  Let E, F and T be three
continuous self mapping of X into itselt, satisfying the
following condition:

2c
1
: ( ) ( )E X T X  and ( ) ( )F X T X

ET = TE, FT = TF

2c
2
:

( , )[ ( ) ( )]
( , )

( ) ( )

r
r s

s r

d Tx Ty d TxE x d TyFy
d E x F y

d TxF y d TyE x

   
 
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[ ( , ) ( , )]

[ ( , ) ( , )]

. ( , )

r s

s r

d Tx E x d Ty F y

d Tx F y d Ty E x

d Tx Ty

 

 


For all x, y in X, where non negative , , ,  such
that 0 <  +  +  +  < 1 with .Tx Ty  If some positive
integers r, s exists such that Er, Fs and T are continuous.
Then E, F, T have unique common fixed point.

Proof:

We have

( ) ( )E X T X and ( ) ( )F X T X

ET = TE, FT = TF

It follows that:

( )rE X   T(X) and ( ) ( )sF X T X

ErT = TEr, FsT = TFs

By   theorem (1) , there is a unique fixed point in X
such that,

u = Tu = Eru = Fsu                 ... (2.1)

i.e u is the unique fixed point of T, Er and Fs

Now T(Eu) = E(Tu) = Eu = E(Eru) = Er(EU)    ... (2.2)

And T(Fu) = F(Tu) = Fu = F(Fsu) = Fs(Fu)     ... (2.3)

Hence it follows that Eu is a common fixed point of Er

and T, similarly is Fu a common fixed point of T and Fs in
X. The uniqueness of u from (2.1), (2.2) and (2.3) implies
that:

u = Eu = Fu = Tu

This complete the proof of the theorem.

Remark:

(i) If r = s = 1 then we get Theorem 1.

Theorem 3

Let (X, ) be a separated L-space, which is d- complete
for a non negative real valued function d on X × X with
d(x, x) = 0, for each x in X. Let A, B, S and T be continuous
self mapping of X into itself, satisfying the following
condition:

      3c
1
: ( ) ( )A X T X  and ( ) ( )B X T X As SA 

BT = TB and T(X) or S(X) are closed sub set of X

3c
2
: d(Ax, By) < d(Sx, Ty) + 

max
[d(Sx, Ax),

d(Ty, By), d(Sx, By), d(Ty, Ax)]

For all x, y in X, where non negative such that
0 <  +  < 1, then A, B, S, T have unique common fixed
point in X.

Proof:

Let x
0
 be an arbitrary point of X, since ( ) ( )A X T X

we can choose the point x
1
 and y

0
 in X such that,

Ax
0
 = Tx

1
 = y

0

Also ( ) ( ),B X S X we can choose the point x
2
 and y

1

in X such that,

Bx
1
 = Sx

2
 = y

1

In general we can choose the points

Tx
2n+1

 = Ax
2n

 = y
2n

                     ... (3.1)

And Sx
2n+2

 = B
2n+1

 = y
2n+1

                ... (3.2)

For all n = 0, 1, 2, ... ... ... ... ...

Now consider,

d(y
2n

, y
2n+1

) = d(Ax
2n

, Bx
2n+1

)

From 3c
2
:

d(Ax
2n

, Bx
2n+1

) < d(Sx
2n

, Tx
2n+1

) +

2 2 2 1 2 1
max

2 2 1 2 1 2

( , ), ( , )

( , ), ( , )
n n n n

n n n n

d Sx Ax d Tx Bx

d Sx Bx d Tx Ax
 

 

 
  

 
d(y

2n
, y

2n+1
) < d(y

2n�1, y2n
) +

             
2 2 1

max
2 1 2 1 2 2 1

( , )

( , ), ( , )
n n

n n n n

d y y

d y y d y y


  

 
  

 
 ... (3.3)

There arise three cases,

Case 1

If we take max is d(y
2n�1, y2n

), then (3.3)  gives,

d(y
2n+1

, y
2n

) < ( + )d(y
2n�1, y2n

)

Case 2

If we take max is d(y
2n+1

, y
2n

), then (3.3) gives

2 1 2 2 1 2( , ) ( , )
1n n n nd y y d y y 





Case 3

If we take max is d(y
2n+1

, y
2n�1), then (3.3) gives

2 1 2 2 1 2( , ) ( , )
1n n n nd y y d y y 
 




From the above Cases 1, 2, 3, we observe that,

d(y
2n+1

, y
2n

) < qd(y
2n�1, y2n

)

where q = max ( ), , 1
1 1

    
     

For n = 1, 2, 3, ... ... ...

Similarly we have,

2 1 2 0 1( , ) ( , )n
n nd y y q d y y 

For every positive integer n, this means that,

2 1 20
( , )i ii

d y y



 

Thus the completeness of the space implies that the

sequence  { }n n Ny  converges to the some u in X so by
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(3.1) and (3.2) the sequence {Anx
0
), {Bnx

0
}, {Snx

0
}, {Tnx

0
}

also converges to the some points u respectively:

Since A, B, S, T are continuous, this implies

2 1 2 2  as n n nTx Ax y u n    

2 2 2 1 2 1  as n n nSx B y u n     

The pair (A, S) and (B, T) are weakly compatible which
gives that, U is a common fixed point of A, B, S and T.

Uniqueness:

Let us assume that w is another fixed point of A, B, S,
T in X different form u, i.e. u w  then

Tu = Au = u and Sw = Bw = w

From 3c
2
 we have,

d(u, w) < ( + ) d(u, w)

Which contradiction.

Hence u is a unique common fixed point of A, B, S, T
in X.

This complete the proof of the theorem.

Theorem 4

Let (X, ) be a separated L-space, which is d- complete
for  a non negative real valued function d on
X × X with d(x, x) = 0, for each x in X.

Let E, F and T be three continuous self mapping of X
into itself, satisfying the following condition:

4c
1
: ( ) ( )E X T X  and ( ) ( )F X T X

ET = TE, FT = TF

4c
2
: 2{ ( , )} ( , ) ( , )d Ex Fy d Tx Ex d Ty Fy 

( , ) ( , )d Tx Fy d Ty Ex

              ( , ) ( , ) ( , ) ( , )d Tx Ex d Ex Ty d Tx Ty d Ty Fy  

For all x, y in X, where non negative , , ,  such
that 0 <  +  +  +  < 1, with Tx Ty  then E, F, T have
unique common fixed point.

Proof:

Let 0 ,x X since ( ) ( )E X T X  we can choose a

point 1 ,x X  such that Tx
1
 = Ex

0
, also ( ) ( ),F X T X  we

can choose 2x X such that Tx
2
 = Fx

1
.

In general we can choose the point:

2 1 2n nTx Ex                          ... (4.1)

2 2 2 1n nTx Fx                       ... (4.2)

For every ,n N we have

2 2
2 1 2 2 2 2 1[ ( , )] [ ( , )]n n n nd Tx Tx d Ex Fx  

From 5c
2

2
2 2 1 2 2 2 1 2 1[ ( , )] ( , ) ( , )n n n n n nd Ex Fx d Tx Ex d Tx Fx   

2 2 1 2 1 2( ( , ) ( , )n n n nd Tx Fx d Tx Ex 

2 2 2 2 1( , ) ( , )n n n nd Tx Ex d Ex Tx 

2 2 1 2 1 2 1( , ) ( , )n n n nd Tx Tx d Tx Fx  

2
2 1 2 2 2 2 1 2 1 2 2[ ( , )] ( , ) ( , )n n n n n nd Tx Tx d Tx Tx d Tx Tx     

2 2 2 2 1 2 1( , ) ( , )n n n nd Tx Tx d Tx Tx  

2 2 1 2 1 2 1( , ) ( , )n n n nd Tx Tx d Tx Tx  

2 2 1 2 1 2 2( , ) ( , )n n n nd Tx Tx d Tx Tx  

2 1 2 2 2 2 1( , ) ( ) ( , )n n n nd Tx Tx d Tx Tx     

For n = 1, 2, 3, ... ... ...

Whether 2 1 2 2( , ) 0 or notn nd Tx Tx  

Similarly, we have

2 1 2 2 0 1( , ) ( ) ( , )n
n nd Tx Tx d Tx Tx     

For every positive integer n, this means that,

2 1 2 20
( , )i ii

d Tx Tx


 
 

Thus the d- completeness of the space implies that,

the sequence 0{ }n
n NT x   converges to some u by (4.1) and

(4.2):

0{ }n
n NE x   and 0{ }n

n NF x   also converges to the some
point respectively.

Since E, F, T are continuous, there is a subsequence t

of 0{ }n
n NT x   such that,

[ ( )] ( ), [ ( )] ( )E T t E u T E t T u 

[ ( )] ( ), [ ( )] ( )F T t F u T F t T u 

By (4c
1
) we have,

E(u) = F(u) = T(u)                  ... (4.3)

Thus,

T(Tu) = T(Eu) = E(Tu) = E(Eu) = E(Fu)

= T(Fu) = F(Tu) = F(Eu) = F(Fu)  ... (4.4)

By 4c
2
, (4.3) and (4.4) we have,

( ) ( )E u F Eu

2[ { , ( )}] ( , ) [{ ( ), ( )}]d Eu F Eu d Tu Eu d T Eu F Eu 

[ , ( )] [ ( ), ]d Tu F Eu d T Eu Eu

( , ) [ , ( )]d Tu Eu d Eu T Eu

[ , ( )] [ , ( )]d Tu T Eu d Tu F Eu

d[Eu, F(Eu)] < 0

Thus we get a contradiction.
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Hence Eu = F(Eu)                          ... (4.5)

From (4.4) and (4.5) we have

Eu = F(Eu) = T(Eu) = E(Eu)

Hence Eu is a common fixed point of E, F and T.

Uniqueness:

Let v is another fixed point of E, F and T different
from then by 1c

2
 we have,

2 2[ ( , )] [ ( , )]d u v d Eu Fv

2[ ( , )] ( , ) ( , )d Eu Fv d Tu Eu d Tv Fv 

( , ) ( , )d Tu Fv d Tv Eu

( , ) ( , )d Tu Eu d Eu Tv

( , ) ( , )Tu Tv d Tv Fv

( , ) ( , )d u v d u v 

Which contradiction.

Therefore u is unique fixed point of E, F and T in X.

Remarks:

(i) If we put  =  =  = 0 and E = F then we get the
result of Jungek [11].

(ii) If we put  =  = 0 then we get the result of
Pathak and Dubey [14].

(iii) If we put  =  = 0 and E = F then we get the
result of Yeh [19].
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